Distribution Free Bounds for Service Constrained (Q, r) Inventory Systems
نویسندگان
چکیده
A classical and important problem in stochastic inventory theory is to determine the order quantity (Q) and the reorder level (r) to minimize inventory holding and backorder costs subject to a service constraint that the fill rate, i.e., the fraction of demand satisfied by inventory in stock, is at least equal to a desired value. This problem is often hard to solve because the fill rate constraint is not convex in (Q, r) unless additional assumptions are made about the distribution of demand during the lead-time. As a consequence, there are no known algorithms, other than exhaustive search, that are available for solving this problem in its full generality. Our paper derives the first known bounds to the fill-rate constrained (Q, r) inventory problem. We derive upper and lower bounds for the optimal values of the order quantity and the reorder level for this problem that are independent of the distribution of demand during the lead time and its variance. We show that the classical economic order quantity is a lower bound on the optimal ordering quantity. We present an efficient solution procedure that exploits these bounds and has a guaranteed bound on the error. When the Lagrangian of the fill rate constraint is convex or when the fill rate constraint does not exist, our bounds can be used to enhance the efficiency of existing algorithms. c © 2000 John Wiley & Sons, Inc. Naval Research Logistics 47: 635–656, 2000
منابع مشابه
Optimal Solution in a Constrained Distribution System
We develop a method to obtain an optimal solution for a constrained distribution system with several items and multi-retailers. The objective is to determine the procurement frequency as well as the joint shipment interval for each retailer in order to minimize the total costs. The proposed method is applicable to both nested and non-nested policies and ends up with an optimal solution. To solv...
متن کاملOptimal (R, Q) policy and pricing for two-echelon supply chain with lead time and retailer’s service-level incomplete information
Many studies focus on inventory systems to analyze different real-world situations. This paper considers a two-echelon supply chain that includes one warehouse and one retailer with stochastic demand and an up-to-level policy. The retailer’s lead time includes the transportation time from the warehouse to the retailer that is unknown to the retailer. On the other hand, the warehouse is unaware ...
متن کاملPERMUTATION GROUPS WITH BOUNDED MOVEMENT ATTAINING THE BOUNDS FOR ODD PRIMES
Let G be a transitive permutation group on a set ? and let m be a positive integer. If no element of G moves any subset of ? by more than m points, then |? | [2mp I (p-1)] wherep is the least odd primedividing |G |. When the bound is attained, we show that | ? | = 2 p q ….. q where ? is a non-negative integer with 2 < p, r 1 and q is a prime satisfying p < q < 2p, ? = 0 or 1, I i n....
متن کاملDeriving the Exact Cost Function for a Two-Level Inventory System with Information Sharing
In this paper we consider a two-level inventory system with one warehouse and one retailer with information exchange. Transportation times are constant and retailer faces independent Poisson demand. The retailer applies continuous review (R,Q)-policy. The supplier starts with m initial batches (of size Q), and places an order to an outside source immediately after the retailer’s inventory posit...
متن کاملDetermination of a Desirable Inventory Policy in a three Echelon Multilayer Supply Chain with Normal Demand
Inventory control is one of the most important issues in supply chain management. In this paper, a three-echelon production, distribution, inventory system composed of one producer, a set of wholesalers and retailers is considered. Costumers' demands can be approximated by a normal distribution and the inventory policy is a kind of continuous review (R, Q). In this paper, a model based on stand...
متن کامل